My friend here in Goettingen, Daniel Pape, has told me about his very short paper in which he proves an interesting lemma about Von Neumann dimension. AFAIU it was earlier proved by Gabor Elek in a bit less general context. The lemma concerns discrete groups and it has immediate interesting applications for amenable groups.

(*1*)

Let be a discrete group, let be some element of , and let be some finite subset of . Furthermore, let denote a Hilbert space of square-integrable function on . We are interested in , where is now seen as an operator on , and is the Von Neumann dimension defined as follows: given , take orthogonal projection onto and put

where is a neutral element of and is a standard scalar product on .

Computing is rather difficult. The lemma relates to a (much more easily computable) standard linear dimensions of certain finite-dimensional spaces.

(*2*)

Before giving the lemma, few words on the Von Neumann dimension. It is an interesting number mostly for -equivariant spaces (right equivariant, because we assume that elements of the group act on the left, and images of such operators are right equivariant).

Suppose for a second that is a finite group. What is a (standard) dimension of a given ? To compute it you can take a projection onto and take the trace of this projection, so the (standard) dimension of is

But when is right invariant then so is projection (these statements are equivalent) and so every summand above is equal to . Therefore we get that

or in other words: is just a normalized dimension (normalized in such a way so that ).

The point is the following: in the case when is finite, the formula gives a normalized dimension. However, in the case of infinite the formula also makes sense, although the “normalized dimension” is !

So the Von Neumann dimension is potentially useful in situations where we want to say how big certain infinitely dimensional equivariant set is, when taken into account the group symmetries.

As an example consider , the group of integers. By Fourier transform we have that , and the action of on the latter is realized by a pointwise multiplication by the function . Example of an equivariant subspace of is a subspace of functions which have the support contained in some set . What is ? It is very easy to see that it is a measure of the set .

(*3*)

One of the big conjectures in the geometric group theory is, however, that when the group is torsion free then is . More generally, one considers not only acting on , but also acting on . In this case the Von Neumann dimension is defined as a sum of standard von Neumann dimensions of diagonal elements of a matrix, and the conjecture says that (for a torsion-free ) so defined dimension of the kernel of an element of is an integer.

Similarly, everything I write further can also be generalized to matrices over a group ring in a straightforward way, but to simplify the notation I will consider only .

(*4*)

One more definition: when is a finite subset of then we define of a given subspace of to be

where is, as usual, an orthogonal projection onto .

In general it is rather difficult to compute because it involves a projection onto potentially infinite dimensional space. However, it turns out that sometimes we can hope to approximate this situation by a finite dimensional one. This is what the lemma is about.

Lemma:Let be a discrete group, be an element of , and be a finite subset of . Then we have that,

where is a subset of consisting of those element which are mapped by outside of ; and is an operator restricted to

**Proof:** First ingredient is the following standard equality:

where denotes the closed image. I don’t know how to prove it, but you can find it in Wolfgan Lueck’s book on -invariants. The second ingredient is another equality:

which is just a standard linear algebra of finitely dimensional spaces.

Now you plug the first equation to the second one and use the following simple observation:

which you prove by noticing that for (this alone proves the first inequality), and that for a -equivariant . This gives the second inequality.

**Q.E.D.**

(*4*)

The lemma is valid in a general context of discrete groups. However, it’s clearly “designed” to work well for amenable groups. In the case of amenable groups, for every there exists a finite set such that is arbitrarily small. Therefore for amenable groups we get the following corollary:

Cory:Let be amenable, and let . Then the following are equivalent:

- there exists an element such that
- there exists an element such that .

This follows from the above lemma and the fact that for -equivariant space , is iff . For general discrete groups above cory is an open conjecture (maybe one should restrict atttention to torsion free groups).

In as similar (slightly more involved) fashion one gets so called strong approximation conjecture for amenable groups:

Cory:Let be a directed system of normal subgroups of , such that . Then.

(*5*)

Two things catch my attention: does the condition

For every , and there exists a finite set such that characterize amenable groups? Most likely so, but I have to think about it a trifle more.

And second, can you take some more general subspace of instead of ? The main problem here seems to be the equality

, which no longer holds (after suitable deinifition od as a normalized trace of a projection from to ) in general.

## 6 comments

Comments feed for this article

May 21, 2009 at 11:40 pm

MarinkinaТо что бредомысли это точно :)

Видно настиг творческий кризис. Мысле нет о чем писать :)

May 23, 2009 at 6:11 pm

CederashЗанимательная интересная статья Да и в отличие от большинства других подобных советов воду в уши не льешь

May 24, 2009 at 5:23 pm

FerinannndСпасибо за пост. Позновательно.

May 26, 2009 at 6:45 am

AverteddЧестно говоря, сначала до конца не понял, но со второго раза дошло – спасибо!

February 11, 2011 at 2:25 am

downloadi have read your entire post.keep on posting.

April 20, 2011 at 10:07 am

gspayshopshttp://www.gspayshop.com 60%off ($30-$70) SHOES/T-shirts/JACKET/JEANS/BAGS on sale wholesales:ni k e adi das u gg ba pe burb erry chan el coa ch L V gu cci ho gan pra da lac oste pu ma arma ni D G e d ha rdy ok ey and so on.And we can offer all COLORS and all SIZE. Our prices are for wholesale. So our price is very reasonable. If you want to order more newer products,Any question please